Subject Code—11707

M. Sc. EXAMINATION

(Batch 2019 Onwards)

(For Regular/Affiliated/Distance Mode)

(First Semester)

MATHEMATICS

MAL-511

Algebra

Time: 3 Hours

ufi

SS

Maximum Marks: 70

Note: Attempt Five questions in all, selecting one question from each Section. Q. No. 1 is compulsory.

- 1. (a) Find second commutator subgroup of D_3 , where D_3 is the dihedral group. 2
 - (b) Write upper and lower central series of a group of order 257.

P.T.O.

series of a groups?		What do you allow series of a group? Does this series	exis
for every lilite 5		for every finite groups?	2

- (d) Give an example of an algebraic extension and a transcendental extension of field of rational numbers.
- (e) Define normal extension of a field. Give an example of normal extension of the field of rational numbers. 2
- (f) Write the cyclotomic polynomial $\phi_{27}(x)$.
- (g) Write Galois group of the polynomial $x^2 2 \in Q(x)$.

Section I

- 2. (a) State and prove Zassenhaus lemma. 5
 - (b) Define composition series of a group. Show that each factor of composition series of a finite p-group has order p. Write all the composition series of D₄, where D₄ is dihedral group of order 8.

9

- and prove Scheiers refinement 3. (a) theorem. Hence deduce that every two composition series of a group G have same length.
 - If x, y, z are arbitrary elements of a (b) group then $[x, z, y^x][y, x, z^y][z, y, x^z] =$ 1, where 1 is the identity element of G. 5

Section II

- 4. (a) Show that a group G is solvable if and only if its kth commutator subgroup is identity. Hence deduce that D_8 is solvable.

10

- (b) Show that S_5 is not solvable, where S_5 is symmetric group of degree 5.
- Define the upper central series and the 5. (a) lower central series of a group G. If G is a group of class r, then show that the length of upper and lower central series of G is also r. Discuss the result for a nilpotent group of class three.

(2-41-20-1222) J-11707

3

P.T.O.

(b) If H is a proper subgroup of a nilpotent group G, then show that H is a proper subgroup of its normalizer also. Hence deduce that S₃ is not nilpotent.

Section III

- 6. (a) Show that α is algebraic over the field F iff $F(\alpha)$ is a finite extension of F. 7
 - (b) Show that α and β are conjugate over F iff they have same minimal polynomial.

7. (a) Show that an extension K of F is a normal extension iff K is the splitting filed of some polynomial over F. 9

(b) Show that a regular n-gon is constructible if $\phi(n)$ is a power of two, where ϕ is Euler's Phi function.

Section IV

8. (a) Show that every cyclotomic polynomial $\phi_n(x)$ is irreducible over Q.

- (b) Find the Galois Groups of polynomials $x^4 2$ and $x^4 3x^2 +$ over the field of rational numbers
- 9. (a) If K is a normal extension of F and T a subfield of K containing F, then sh that T is normal extension of F G (K, T) is a normal subgroup G(K, F).
 - (b) Let f(x) be solvable by radicals over Show that the Galois group is solvab